
Symmetry Breaking for Maximum Satisfiability ⋆

Joao Marques-Silva1, Inês Lynce2, and Vasco Manquinho2

1 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

2 IST/INESC-ID, Technical University of Lisbon, Portugal
{ines,vmm}@sat.inesc-id.pt

Abstract. Symmetries are intrinsic to many combinatorial problems including
Boolean Satisfiability (SAT) and Constraint Programming (CP). In SAT, the iden-
tification of symmetry breaking predicates (SBPs) is a well-known, often effec-
tive, technique for solving hard problems. The identification of SBPs in SAT has
been the subject of significant improvements in recent years, resulting in more
compact SBPs and more effective algorithms. The identification of SBPs has also
been applied to pseudo-Boolean (PB) constraints, showing that symmetry break-
ing can also be an effective technique for PB constraints. This paper extends
further the application of SBPs, and shows that SBPs can be identified and used
in Maximum Satisfiability (MaxSAT), as well as in its most well-known variants,
including partial MaxSAT, weighted MaxSAT and weighted partial MaxSAT. As
with SAT and PB, symmetry breaking predicates for MaxSAT andvariants are
shown to be effective for a representative number of problemdomains, allowing
solving problem instances that current state of the art MaxSAT solvers could not
otherwise solve.

1 Introduction

Symmetry breaking is a widely used technique for solving combinatorial problems.
Symmetries have been extensively studied in Boolean Satisfiability (SAT) [15, 4, 7,
1], and are regarded as an essential technique for solving specific classes of problem
instances. Symmetries have also been widely used for solving constraint satisfaction
problems (CSPs) [11]. More recent work has shown how to applysymmetry breaking
in pseudo-Boolean (PB) constraints [2] and also in soft constraints [24]. It should be
noted that symmetry breaking is viewed as an effective problem solving technique, ei-
ther for SAT, PB or CP, that is often used as an optional technique, to be used when
default algorithms are unable to solve a given problem instance.

In recent years there has been a growing interest in algorithms for MaxSAT and
variants [16, 17, 26, 13, 14, 18, 21, 20], in part because of the wide range of potential
applications. MaxSAT and variants represent a more generalframework than either
SAT or PB, and so can naturally be used in many practical applications. The interest
in MaxSAT and variants motivated the development of a new generation of MaxSAT
algorithms, remarkably more efficient than early MaxSAT algorithms [25, 5]. Despite
the observed improvements, there are many problems still too complex for MaxSAT

⋆ This paper extends a preliminary technical report [19] on the same subject.
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algorithms to solve [3]. Natural lines of research for improving MaxSAT algorithms in-
clude studying techniques known to be effective for either SAT, PB or CP. One concrete
example is symmetry breaking. Despite its success in SAT, PBand CP, the usefulness
of symmetry breaking for MaxSAT and variants has not been thoroughly investigated.

This paper addresses the problem of using symmetry breakingin MaxSAT and in
its most well-known variants, partial MaxSAT, weighted MaxSAT and weighted partial
MaxSAT. The work extends past recent work on computing symmetries for SAT [1]
and PB constraints [2] by computing automorphisms on colored graphs obtained from
CNF or PB formulas, and by showing how symmetry breaking predicates [7, 1] can
be exploited. The experimental results show that symmetry breaking is an effective
technique for MaxSAT and variants, allowing solving problem instances that state of
the art MaxSAT solvers could not otherwise solve.

The paper is organized as follows. The next section introduces the notation used
throughout the paper, provides a brief overview of MaxSAT and variants, and also sum-
marizes the work on symmetry breaking for SAT and PB constraints. Afterwards, the
paper describes how to apply symmetry breaking in MaxSAT andvariants. Experi-
mental results, obtained on representative problem instances from the MaxSAT eval-
uation [3] and also from practical applications [1], demonstrate that symmetry break-
ing allows solving problem instances that could not be solved by anyof the available
state of the art MaxSAT solvers. The paper concludes by summarizing related work, by
overviewing the main contributions, and by outlining directions for future work.

2 Preliminaries

This section introduces the notation used through the paper. Moreover, this section sum-
marizes relevant results in symmetry identification and symmetry breaking, and devel-
ops extensions to existing results, which will serve for applying symmetry breaking in
MaxSAT. Finally, this section also summarizes the MaxSAT problem and its variants.

2.1 Propositional Satisfiability

The usual definitions of propositional logic are assumed. Let X = {x1, x2, . . . , xn}
denote a set of propositional variables. A propositional formulaϕ in conjunctive normal
form (CNF) is a conjunction of clauses. A clauseω is a disjunctions of literals. A literal
is either a variable (x ∈ X) or its complement (̄x, with x ∈ X). Where appropriate,
clauses are viewed as sets of literals, defined onX , and CNF formulas are viewed as
set of clauses.

A truth assignment is a functionA : X → {0, 1}. The usual semantics of proposi-
tional logic is used for associating values with formulas given truth assignments to the
variables. Assignments serve for computing the values of literals, clauses and the com-
plete CNF formula, respectively,A(l), A(ω) andA(ϕ) 3. As a result, the truth value of

3 The use ofA for describing the truth value of clauses and CNF formulas isan often used abuse
of notation.
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literals, clauses and CNF formulas can be defined as follows:

A(l) =

{

A(xi) if l = xi

1 −A(xi) if l = x̄i
(1)

A(ω) = max{A(l) | l ∈ ω} (2)

A(ϕ) = min{A(ω) |ω ∈ ϕ} (3)

A clause is said to besatisfiedif at least one of its literals assumes value 1. If all literals
of a clause assume value 0, then the clause isunsatisfied. A formula is satisfied if all
clauses are satisfied, otherwise it is unsatisfied. A truth assignment that satisfiesϕ is
referred to asmodel. The set of models ofϕ is denoted byM(ϕ). The propositional
satisfiability (SAT) problem consists in deciding whether there exists an assignment to
the variables such thatϕ is satisfied.

2.2 Symmetries

A symmetry is an operation that preserves the constraints, and therefore also preserves
the solutions of a problem instance [6]. For a set of symmetric objects, it is possible to
obtain the whole set of objects from any of the objects. The elimination of symmetries
has been extensively studied in CP and SAT [15, 4, 22, 7]. Withthe goal of developing
a solution for breaking symmetries in MaxSAT, this section provides a few necessary
definitions related with symmetries in propositional formulas [7].

For a setX of variables, apermutationof X is a bijective functionπ : X → X ,
and the image ofx underπ is denotedxπ. The set of all permutations ofX is denoted
by PX , and this set is a group under the composition operation. Permutations can be
extended to literals, clauses and formulas, by replacing each literal by its permuted
literal. As a result,ϕπ = ∧i ωπ

i , andωπ
i = ∨j lπi . Moreover,lπj = xπ

j if lj = xj , and
lπj = xπ

j if lj = x̄j .
Permutations also map truth assignments to truth assignments. If π ∈ PX , then each

truth assignmentA is mapped into a new truth assignmentπA, whereπA(x) = A(xπ).
Given a formulaϕ andπ ∈ PX , π is a symmetry(or automorphism) iff ϕπ = ϕ.

Moreover,Sϕ represents the set of symmetries ofϕ. A well-known result in symmetry
breaking for SAT is the following [7]:

Proposition 1 (Proposition 2.1 in [7]).Letϕ be a CNF formula overX , π ∈ Sϕ, and
A a truth assignment ofX . ThenA ∈ M(ϕ) iff πA ∈ M(ϕ).

Proposition 1 can be extended to account for the number of unsatisfied clauses given
an assignment. Essentially, the number of unsatisfied clauses remainsunchangedin
the presence of permutations. A permutation maps each clause to another clause. For
each assignment, each unsatisfied clause is mapped to another clause which is also
unsatisfied.

Letµ(ϕ,A) denote the number of unsatisfied clauses of formulaϕ given assignment
A. ClearlyM(ϕ) = {A |µ(ϕ,A) = 0}. Then the following holds:

Proposition 2. Let ϕ be a CNF formula overX , π ∈ Sϕ, andA a truth assignment
of X . Thenµ(ϕ,A) = µ(ϕπ, πA).
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Proof: The proof follows from the discussion above. Symmetries mapclauses into
clauses. Unsatisfied clauses will be mapped into unsatisfiedclauses, and the mapping is
one-to-one.

Proposition 2 is used in the following sections for validating the correctness of sym-
metry breaking for MaxSAT and extensions.

It is also known thatSϕ induces an equivalence relation on the truth assignments
of X . Moreover, observe that for each equivalence class, the number of unsatisfied
clauses is the same. Symmetry breaking predicates (SBPs) are used for selecting a re-
duced set of representatives from each equivalence class (ideally one representative
from each equivalence class).

2.3 Symmetry Breaking

Given the definition of symmetries, symmetry breaking predicates target the elimination
of all but one of the equivalent objects [7, 1]. Symmetry breaking is expected to speed
up the search as the search space gets reduced. For specific problems where symmetries
may be easily found this reduction may be significant. Nonetheless, the elimination
of symmetries necessarily introduces overhead that is expected to be negligible when
compared with the benefits it may provide.

The most well-known strategy for eliminating symmetries inSAT consists in adding
symmetry breaking predicates (SBPs) to the CNF formula [7].SBPs are added to the
formula before the search starts. The symmetries may be identified for each specific
problem, and in that case it is required that the symmetries in the problem are identified
when creating the encoding. Alternatively, one may give a formula to a specialized tool
for detecting all the symmetries [1]. The resulting SBPs select one representative from
each equivalence class. In case all symmetries are broken, only one assignment, instead
of n assignments, may satisfy a set of constraints,n being the number of elements in a
given equivalence class. The most often used approach for constructing SBPs consists
in selecting the least assignment in each equivalence class, e.g. by implementing predi-
cates that compare pairs of truth assignments. Other approaches include remodeling the
problem [23] and breaking symmetries during search [12]. Remodeling the problem im-
plies creating a different encoding, e.g. obtained by defining a different set of variables,
in order to create a problem with less symmetries or even noneat all. Alternatively, the
search procedure may be adapted for adding SBPs as the searchproceeds to ensure that
any assignment symmetric to one assignment already considered will not be explored
in the future, or by performing checks that symmetric equivalent assignments have not
yet been visited.

Currently available tools for detecting and breaking symmetries for a given formula
are based on group theory. From each formula a group is extracted, where a group
is a set of permutations. A permutation is a one-to-one correspondence between a set
and itself. Each symmetry defines a permutation on a set of literals. In practice, each
permutation is represented by a product of disjoint cycles.Each cycle(l1 l2 . . . lm) with
sizem stands for the permutation that mapsli on li+1 (with 1 ≤ i ≤ m− 1) andlm on
l1. Applying a permutation to a formula will produce exactly the same formula.
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Example 1.Consider the following CNF formula:

ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x̄2) ∧ (x3 ∨ x2) ∧ (x̄3 ∨ x2)

The permutations identified forϕ are(x3 x̄3) and(x1 x3)(x̄1 x̄3). (The permutation
(x1 x̄1) is implicit.) The formula resulting from the permutation(x3 x̄3) is obtained
by replacing every occurrence ofx3 by x̄3 and every occurrence of̄x3 by x3. Clearly,
the obtained formula is equal to the original formula. The same happens when applying
the permutation(x1 x3)(x̄1 x̄3): replacingx1 by x3, x3 by x1, x̄1 by x̄3 and x̄3 by
x̄1 produces the same formula. From [7, 1], selection of the least assignment in each
permutation yields the symmetry breaking predicateϕsbp = (x̄3) ∧ (x̄1 ∨ x3).

2.4 Maximum Satisfiability

Given a propositional formulaϕ, the MaxSAT problem is defined as finding an assign-
ment to variables inϕ such that the number of satisfied clauses is maximized. (MaxSAT
can also be defined as finding an assignment that minimizes thenumber of unsatisfied
clauses.) Well-known variants of MaxSAT include partial MaxSAT, weighted MaxSAT
and weighted partial MaxSAT.

For partial MaxSAT, a propositional formulaϕ is described by the conjunction of
two CNF formulasϕs andϕh, whereϕs represents thesoftclauses andϕh represents
thehardclauses. The partial MaxSAT problem over a propositional formulaϕ = ϕh ∧
ϕs consists in finding an assignment to the problem variables such that all hard clauses
(ϕh) are satisfied and the number of satisfied soft clauses (ϕs) is maximized.

For weightedMaxSAT, each clause in the CNF formula is associated to a non-
negative weight. A weighted clause is a pair(ω, c) whereω is a classical clause and
c is a natural number corresponding to the cost of unsatisfying ω. Given a weighted
CNF formulaϕ, theweightedMaxSAT problem consists in finding an assignment to
problem variables such that the total weight of the unsatisfied clauses is minimized,
which implies that the total weight of the satisfied clauses is maximized.

For theweighted partialMaxSAT problem, the formula is the conjunction of a
weighted CNF formula (soft clauses) and a classical CNF formula (hard clauses). The
weighted partial MaxSAT problem consists in finding an assignment to the variables
such that all hard clauses are satisfied and the total weight of satisfied soft clauses is
maximized. Observe that, for both partial MaxSAT and weighted partial MaxSAT, hard
clauses can also be represented as weighted clauses. For hard clauses one can consider
that the weight is greater than the sum of the weights of the soft clauses. This allows a
more uniform treatment of hard and weighted soft clauses.

MaxSAT and variants find a wide range of practical applications, that include schedul-
ing, routing, bioinformatics, and design automation. Moreover, MaxSAT can be used
for solving pseudo-Boolean optimization [14]. The practical applications of MaxSAT
motivated recent interest in developing more efficient algorithms. The most efficient
algorithms for MaxSAT and variants are based on branch and bound search, using ded-
icated bounding and inference techniques [16, 17, 13, 14]. Lower bounding techniques
include, for example, the use of unit propagation for identifying necessarily unsatisfied
clauses, whereas inference techniques can be viewed as restricted forms of resolution,
with the objective of simplifying the problem instance to solve.
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3 Symmetry Breaking for MaxSAT

This section describes how to use symmetry breaking in MaxSAT. First, the construc-
tion process for the graph representing a CNF formula is briefly reviewed [7, 1], as it
will be modified later in this section. Afterwards, plain MaxSAT is considered. The
next step is to address symmetry breaking for partial, weighted and weighted partial
MaxSAT.

3.1 From CNF Formulas to Colored Graphs

Symmetry breaking for MaxSAT and variants requires a few modifications to the ap-
proach used for SAT [7, 1]. This section summarizes the basicapproach, which is then
extended in the following sections.

Given a graph, thegraph automorphismproblem consists in finding isomorphic
groups of edges and vertices with a one-to-one correspondence. In case of graphs with
colored vertices, the correspondence is made between vertices with the same color. It
is well-known that symmetries in SAT can be identified by reduction to a graph au-
tomorphism problem [7, 1]. The propositional formula is represented as an undirected
graph with colored vertices, such that the automorphism in the graph corresponds to a
symmetry in the propositional formula.

Given a propositional formulaϕ, a colored undirected graph is created as follows:

– For each variablexj ∈ X add two vertices to representxj andx̄j . All vertices are
associated with variables are colored with color 1;

– For each variablexj ∈ X add an edge between the vertices representingxj andx̄j ;
– For each binary clauseωi = (lj ∨ lk) ∈ ϕ, add an edge between the vertices

representinglj andlk;
– For each non-binary clauseωi ∈ ϕ create a vertex colored with color 2;
– For each literallj in a non-binary clauseωi, add an edge between the vertices

representing the literal and the clause.

Example 2.Figure 1 shows the colored undirected graph associated withthe CNF for-
mula of Example 1. Vertices with shape◦ represent color 1 and vertices with shape
⋄ represent color 2. Vertex 1 corresponds tox1, 2 to x2, 3 to x3, 4 to x̄1, 5 to x̄2, 6
to x̄3 and 7 to unit clause(x̄2). Edges 1-2, 2-3, 2-4 and 2-6 represent binary clauses
and edges 1-4, 2-5 and 3-6 link complemented literals. Finally, edge 5-7 associates the
correct literal with the unit clause.

Observe that for binary clauses it suffices to connect the vertices of the literals as-
sociated with the clause [1].

3.2 Plain Maximum Satisfiability

Let ϕ represent the CNF formula of a MaxSAT instance. Moreover, let ϕsbp be the
CNF formula for the symmetry-breaking predicate obtained with a CNF symmetry tool
(e.g. Shatter4 [1] built on top of Saucy [8]). All clauses inϕ are effectivelysoftclauses,

4 Available from http://www.eecs.umich.edu/∼faloul/Tools/shatter/.
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(a) Colored graph

VertexMapping
1 literal x1

2 literal x2

3 literal x3

4 literal x̄1

5 literal x̄2

6 literal x̄3

7 clause(x̄2)

(b) Vertex mapping

Fig. 1.Colored graph for Example 2

for which the objective is to maximize the number of satisfiedclauses. In contrast,
the clauses inϕsbp arehard clauses, which must necessarily be satisfied. As a result,
the original MaxSAT problem is transformed into a partial MaxSAT problem, whereϕ
denotes the soft clauses andϕsbp denotes the hard clauses. The solution of the partial
MaxSAT problem corresponds to the solution of the original MaxSAT problem.

Example 3.As shown earlier, for the CNF formula of Example 1, the generated SBP
(e.g. by Shatter) is:ϕsbp = (x̄3) ∧ (x̄1 ∨ x3). As a result, the resulting instance of
partial MaxSAT will beϕ′ = (ϕh ∧ ϕs) = (ϕsbp ∧ ϕ). The addition of the clauses
associated with the SBP implyx3 = 0 and x1 = 0. Observe that if there exists a
MaxSAT solution forϕ with x3 = 1 or x1 = 1, then not only it cannot have a smaller
number of unsatisfied clauses thanϕ′, but also such a solution must be included in an
equivalent class for which there is at least one representative in the solutions ofϕ′.

As the previous example suggests, the hard clauses represented by ϕsbp do not
change the solution of the original MaxSAT problem. Indeed,the construction of the
symmetry breaking predicate guarantees that the maximum number of satisfied soft
clauses remains unchanged by the addition of the hard clauses.

Proposition 3. The maximum number of satisfied clauses for the MaxSAT problem ϕ

and the partial MaxSAT problem(ϕ ∧ ϕsbp) are the same.

Proof: From Proposition 2 it is known that symmetries maintain the number of unsat-
isfied clauses, and this also holds for the equivalence classes induced by symmetries.
Moreover, symmetry breaking predicates allow for at least one truth assignment from
each equivalence class. Hence, at least one truth assignment from the equivalence class
that maximizes the number of satisfied clauses will satisfy the symmetry breaking pred-
icate, and so the solution of the MaxSAT problem is preserved.

3.3 Partial and Weighted Maximum Satisfiability

For partial MaxSAT, the generation of SBPs needs to be modified. The graph repre-
sentation of the CNF formula must take into account the existence of hard and soft
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clauses, which must be distinguished by a graph automorphism algorithm. Symmetric
objects for problem instances with hard and soft clauses establish a correspondence
either between hard clauses or between soft clauses. In other words, when applying a
permutation hard clauses can only be replaced by other hard clauses, and soft clauses
by other soft clauses. In order to address this issue, the colored graph generation needs
to be modified. In contrast to the MaxSAT case, binary clausesarenot handled differ-
ently from other clauses, and must be represented as vertices in the colored graph. This
is necessary for distinguishing between hard and soft binary clauses, and in general
between binary clauses with different weights.

For the partial MaxSAT problem, clauses can now have one of two colors. A vertex
with color 2 is associated with each soft clause, and a vertexwith color 3 is associ-
ated with each hard clause. (As before, a vertex with color 1 corresponds to a literal.)
This modification ensures that any identified automorphism guarantees that soft clauses
correspond only to soft clauses, and hard clauses correspond only to hard clauses. More-
over, the procedure for the generation of SBPs from the groups found by a graph auto-
morphism tool remains unchanged, and the SBPs can be added tothe original instance
asnewhard clauses. The resulting instance is also an instance of partial MaxSAT. Cor-
rectness of this approach follows from the correctness of the plain MaxSAT case.

The solution for weighted MaxSAT and for weighted partial MaxSAT is similar to
the partial MaxSAT case, but now clauses with different weights are represented by
vertices with different colors. This guarantees that the groups found by the graph auto-
morphism tool take into consideration the weight of each clause. Let{c1, c2, . . . , ck}
denote the distinct clause weights in the CNF formula. Each clauseωi of weight ci,
represented as(ωi, ci) is associated with a vertex of colori + 1 in the colored graph. In
case there exist hard clauses, an additional colork + 2 is used, and so each hard clause
is represented by a vertex with colork + 2 in the colored graph. Associating distinct
clause weights with distinct colors guarantees that the graph automorphism algorithm
can only make the correspondence between clauses with the same weight. Moreover,
the identified SBPs result in newhard clauses that are added to the original problem.
For either weighted MaxSAT or weighted partial MaxSAT, the result is an instance of
weighted partial MaxSAT. As before, correctness of this approach follows from the
correctness of the plain MaxSAT case.

Example 4.Consider the following weighted partial MaxSAT instance:

ϕ = (x1 ∨ x2, 1) ∧ (x̄1 ∨ x2, 1) ∧ (x̄2, 5) ∧

(x̄3 ∨ x2, 9) ∧ (x3 ∨ x2, 9)

for which the last two clauses are hard. Figure 2 shows the colored undirected graph
associated with the formula. Clauses with different weights are represented with differ-
ent colors (shown in the figure with different vertex shapes). A graph automorphism
algorithm can then be used to generate the symmetry breakingpredicatesϕsbp =
(x̄1) ∧ (x̄3), consisting of two hard clauses. As a result, the assignments x1 = 0 and
x3 = 0 become necessary.
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(a) Colored graph

VertexMapping
1 literal x1

2 literal x2

3 literal x3

4 literal x̄1

5 literal x̄2

6 literal x̄3

7 clause(x1 ∨ x2, 1)

8 clause(x̄1 ∨ x2, 1)

9 clause(x̄2, 5)

10 clause(x̄3 ∨ x2, 9)

11 clause(x3 ∨ x2, 9)

(b) Vertex mapping

Fig. 2.Colored graph for Example 4

Table 1.Problem transformations due to SBPs

Original MS PMS WMS WPMS
With SymmetriesPMSPMS WPMSWPMS

Proposition 4. The maximum number of satisfied clauses for the weighted (partial)
MaxSAT problemϕ and the resulting weighted partial MaxSAT problem(ϕ∧ϕsbp) are
the same.

Proof: (Sketch) The proof is similar to the proof of Proposition 3, but noting that
weights partition the set of clauses into sets of clauses that can be mapped into each
other. Since mappings are between clauses with the same weights, the previous results
(from Propositions 2 and 3) still hold.

Table 1 summarizes the problem transformations described in this section, where
MS represents plain MaxSAT, PMS represents partial MaxSAT,WMS represents weigh-
ted MaxSAT, and WPMS represents weighted partial MaxSAT. The use of SBPs intro-
duces a number of hard clauses, and so the resulting problemsare either partial MaxSAT
or weighted partial MaxSAT.

3.4 Evaluating Alternative Formulations

Even though the proposed approach for breaking symmetries does not seem amenable
to further optimizations for the MaxSAT and partial MaxSAT cases, it is interesting
to investigate whether it is possible to optimize the approach outlined in the previous
section for the weighted variants of MaxSAT, e.g. by reorganizing clause weights. This
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section argues that, provided some simple conditions hold,rearranging weights cannot
induce stronger symmetry breaking predicates.

Example 5.Consider the weighted MaxSAT formula:

ϕ = (x1 ∨ x̄2, 7) ∧ (x̄3 ∨ x4, 3) ∧ (x̄3 ∨ x4, 4) (4)

The symmetries for this formula are(x1 x̄2) and(x3 x̄4). Clearly, it is possible to induce
more symmetries by considering the following modification:

ϕ = (x1 ∨ x̄2, 3) ∧ (x1 ∨ x̄2, 4) ∧ (x̄3 ∨ x4, 3) ∧ (x̄3 ∨ x4, 4) (5)

In addition to the previous symmetries, one now also obtains(x1 x3)(x2 x4).

The previous example suggests that by rearranging weights one may be able to
increase the number of identified symmetries. As the examplealso suggests, this can
only happen when a clause is associated withmore than one single weight. For the
previous example(x̄3∨x4) is associated with weights 3 and 4. One simple way to tackle
this problem is to require that multiple occurrences of the same clause be aggregated
into a single clause, i.e. multiple occurrences of the same clause are represented by a
single clause and the multiple weights are added.

Proposition 5. If each clause has a single occurrence in formulaϕ, then splitting the
weight of a clause induces no additional symmetries.

Proof: Suppose that each clause has a single occurrence, and that additional symme-
tries could be identified by splitting the weightci of a single clauseωi. Without loss of
generality assume that weightci is split intoci1 andci2 . If additional symmetries can
now be identified, thenωi is mapped to clauseωj1 due toci1 and to clauseωj2 due to
ci2 . However, since each variable is mapped to some other variable, thenωj1 andωj2

must be the same clause; but this is a contradiction.

The previous result ensures that the approach outlined in Section 3.3, for comput-
ing symmetry breaking predicates for the weighted variations of MaxSAT, cannot be
improved upon by rearranging clause weights, provided eachclause has a single occur-
rence in the formula. Clearly, this is not the case with the earlier example.

4 Experimental Results

The approach outlined in the previous sections for generating SBPs for MaxSAT has
been implemented in MAXSATSBP 5. MAXSATSBP interfaces SAUCY [8], and is orga-
nized similarly to SHATTER [1] and SHATTERPB [2].

The experimental setup has been organized as follows. First, all the instances from
the first and second MaxSAT evaluations (2006 and 2007) [3] were run. A timeout of
1000s of CPU time was considered, and instances requiring more than 1000s of CPU

5 The MAXSATSBP tool is available on request from the authors.
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time are declared asaborted. These results allowed selecting relevant benchmark fami-
lies, for which symmetries occur and which require a non-negligible amount of time for
being solved by both approaches (with or without SBPs). Afterwards, the instances for
which both approaches aborted were removed from the tables of results. This resulted
in selecting thehamming and theMANN instances for plain MaxSAT, theii32 and
again theMANN instances for partial MaxSAT, thec-fat500 instances for weighted
MaxSAT and thedir andlog instances for weighted partial MaxSAT.

Besides the instances that participated in the MaxSAT competition, we have in-
cluded additional plain MaxSAT problem instances (hole,Urq andchnl). Thehole
instances refer to the well-known pigeon hole problem, theUrq instances represent ran-
domized instances based on expander graphs and thechnl instances model the routing
of wires in the channels of field-programmable integrated circuits. These instances refer
to problems that can be naturally encoded as MaxSAT problemsand are known to be
highly symmetric [1]. The approach outlined above was also followed for selecting the
instances to be included in the results.

We have run different publicly available MaxSAT solvers, namely MINI MAX SAT 6,
TOOLBAR 7 andMAXSATZ 8. (MAXSATZ accepts only plain MaxSAT instances.) Evi-
dence from the MaxSAT evaluation suggests that the behaviorof M INI MAX SAT is
similar to TOOLBAR andMAXSATZ , albeit being in general more robust. For this reason,
the results focus on MINI MAX SAT.

Tables 2 and 3 provide the results obtained. In the tables, TOdenotes a timeout, and
so the run time is in excess of 1000s. Table 2 refers to plain MaxSAT instances and Ta-
ble 3 refers to partial MaxSAT (PMS), weighted MaxSAT (WMS) and weighted partial
MaxSAT (WPMS) instances. For each instance, the results shown include the number
of clauses added as a result of SBPs (#ClsSbp), the time required for solving the original
instances (OrigT), i.e. without SBPs, and the time requiredfor breaking the symmetries
plus the time required for solving the extended formula afterwards (SbpT). (The best
configuration for each instance is outlined in bold.) Moreover, the SbpT column is split
into the time to run MAXSATSBP (MXSBP) and the time to run MINI MAX SAT. In
practice, the time required for generating SBPs is negligible. The results were obtained
on an Intel Xeon 5160 server (3.0GHz, 1333Mhz FSB, 4MB cache)running Red Hat
Enterprise Linux WS 4.

The experimental results allow establishing the followingconclusions:

– The inclusion of symmetry breaking isessentialfor solving a number of problem
instances. We should note thatall the plain MaxSAT instances in Table 2 for which
M INI MAX SAT aborted, are also aborted by TOOLBAR andMAXSATZ . After adding
SBPs all these instances become easy to solve by any of the solvers. For the aborted
partial, weighted and weighted partial MaxSAT instances inTable 3 this is not
always the case, since a few instances aborted by MINI MAX SAT could be solved by
TOOLBAR without SBPs. However, the converse is also true, as there are instances
that were initially aborted by TOOLBAR (although solved by MINI MAX SAT) that
are solved by TOOLBAR after adding SBPs.

6 http://www.lsi.upc.edu/∼fheras/docs/m.tar.gz
7 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
8 http://www.laria.u-picardie.fr/∼cli/maxsatz.tar.gz
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Table 2.Results for MINI MAX SAT on plain MaxSAT instances

Name #ClsSbp OrigT SbpTMXSBP MiniMaxSat

hamming10-2 81 TO 0.19 0.009 0.178
hamming10-4 1 886.57496.79 0.01 496.777
hamming6-4 437 0.17 0.15 0.013 0.137
hamming8-2 85 TO 0.21 0.016 0.189
hamming8-4 253 0.36 0.11 0.011 0.102
MANN a27 85 TO 0.24 0.012 0.226
MANN a45 79 TO 0.20 0.011 0.185
MANN a81 79 TO 0.19 0.01 0.184

hole10 758 42.11 0.24 0.023 0.213
hole11 922 510.90 0.47 0.023 0.442
hole12 1102 TO 1.78 0.028 1.752
hole7 362 0.10 0.11 0.007 0.103
hole8 478 0.40 0.13 0.008 0.122
hole9 610 3.68 0.17 0.016 0.15
Urq3 5 29 83.33 0.27 0.033 0.236
Urq4 5 43 TO 50.88 0.07 50.806
chnl10 11 1954 TO 41.79 0.053 41.737
chnl10 12 2142 TO 328.12 0.057 328.063
chnl11 12 2370 TO 420.19 0.075 420.111

– For several instances, breaking only a few symmetries can make the difference. We
have observed that in some cases the symmetries are broken with unit clauses.

– Adding SBPs is beneficial for most cases where symmetries exist. However, for a
few examples, SBPs may degrade performance.

– There is no clear relation between the number of SBPs added and the impact on the
search time.

– The run time of the symmetry breaking tool is in general negligible.

Overall, the inclusion of SBPs should be considered when a hard problem instance
is known to exhibit symmetries. This does not necessarily imply that after breaking
symmetries the instance becomes trivial to solve, and therecan be cases where the new
clauses may degrade performance. However, in a significant number of cases, highly
symmetric problems become much easier to solve after addingSBPs. In many of these
cases the problem instances becometrivial to solve.

5 Related Work

Symmetries are a well-known research topic, that serve to tackle complexity in many
combinatorial problems. The first ideas on symmetry breaking were developed in the
80s and 90s [15, 4, 22, 7], by relating symmetries with the graph automorphism prob-
lem, and by proposing the first approach for generating symmetry breaking predicates.
This work was later extended and optimized for propositional satisfiability [1].
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Table 3.Results for MINI MAX SAT on partial, weighted and weighted partial MaxSAT instances

Name MStype#ClsSbp OrigT SbpTMXSBP MiniMaxSat

ii32e3 PMS 1756 94.40 37.63 0.482 37.15
ii32e4 PMS 2060175.07129.06 0.787 128.277

c-fat500-10 WMS 2 57.79 11.62 0.028 11.591
c-fat500-1 WMS 112 0.03 0.06 0.016 0.046
c-fat500-2 WMS 12 0.16 0.11 0.011 0.049
c-fat500-5 WMS 4 0.16 0.11 0.016 0.091
MANN a27 WMS 1 TO 880.58 0.047 880.533
MANN a45 WMS 1 TO 530.86 0.048 530.807
MANN a81 WMS 1 TO 649.13 0.042 649.084

1502.dir WPMS 1560 0.34 10.67 0.754 9.912
29.dir WPMS 132 TO 28.09 0.031 28.055
54.dir WPMS 98 4.14 0.32 0.029 0.292
8.dir WPMS 58 0.03 0.05 0.008 0.039
1502.log WPMS 812 0.76 0.71 0.32 0.385
29.log WPMS 54 17.55 0.82 0.026 0.792
404.log WPMS 124 TO 64.24 0.094 64.151
54.log WPMS 48 2.37 0.16 0.021 0.139

Symmetries are an active research topic in CP [11]. Approaches for breaking sym-
metries include not only adding constraints before search [22] but also reformula-
tion [23] and dynamic symmetry breaking methods [12]. Recent work has also shown
the application of symmetries to soft CSPs [24].

The approach proposed in this paper for using symmetry breaking for MaxSAT and
variants builds on earlier work on symmetry breaking for PB constraints [2]. Similarly
to the work for PB constraints, symmetries are identified by constructing a colored
graph, from which graph automorphisms are obtained, which are then used to generate
the symmetry breaking predicates.

6 Conclusions

This paper shows how symmetry breaking can be used in MaxSAT and in its most well-
known variants, including partial MaxSAT, weighted MaxSAT, and weighted partial
MaxSAT. Experimental results, obtained on representativeinstances from the MaxSAT
evaluation [3] and practical instances [1], demonstrate that symmetry breaking allows
solving problem instances that no state of the art MaxSAT solver could otherwise solve.
For all problem instances considered, the computational effort of computing symme-
tries is negligible. Nevertheless, and as it is the case withsymmetry breaking for SAT
and PB constraints, symmetry breaking should be consideredas an optional problem
solving technique, to be used when standard techniques are unable to solve a given
problem instance.

The experimental results motivate additional work on computing symmetry break-
ing predicates for MaxSAT. A new more efficient version of Saucy has recently been
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developed [9] and is likely to further reduce the run time forcomputing symmetries.
Moreover, the use of conditional symmetries could be considered [10, 24].
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