
Modern SAT Solving

Inês Lynce

IST/INESC-ID
Technical University of Lisbon

Portugal

CP 2007

Motivation - Why SAT?

• Boolean Satisfiability (SAT) has seen significant
improvements in recent years

– Ok, but SAT is simply a subset of CP...
I This does not make SAT a simple issue!

– So, can we learn anything from there?
I Much more than you can imagine!

Motivation - Some lessons from SAT I

• Time is everything

– Good ideas are not enough, you have to be fast!
– One thing is the algorithm, another thing is the implementation
– Make your source code available

I Otherwise people will have to wait for years before realising
what you have done

Motivation - Some lessons from SAT II

• Competitions are essential

– To check the state-of-the-art
– To keep the community alive
– To get students involved

Motivation - Some lessons from SAT III

• There is no perfect solver!

– Do not expect your solver to beat all the other solvers on all
problem instances

• What makes a good solver?

– Correctness and robustness for sure...
– Being most often the best for its category: industrial,

handmade or random
– Being able to solve instances from different problems

www.satcompetition.org

• Get all the info from the SAT competition web page

– Organizers, judges, benchmarks, executables, source code
– Winners

I Industrial, handmade and random benchmarks
I Sat+Unsat, Sat, Unsat categories
I Gold, Silver, Bronze medals

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Outline

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Boolean Formulas

• Boolean formula ϕ is defined over a set of propositional
variables x1, . . . , xn, using the standard propositional
connectives ¬, ∧, ∨, →, ↔, and parenthesis

– The domain of propositional variables is {0, 1}
– Example: ϕ(x1, . . . , x3) = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

• A formula ϕ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

– Example: ϕ(x1, . . . , x3) = (¬x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3)

• Can encode any Boolean formula into CNF (more later)

Boolean Satisfiability (SAT)

• The Boolean satisfiability (SAT) problem:

– Find an assignment to the variables x1, . . . , xn such that
ϕ(x1, . . . , xn) = 1, or prove that no such assignment exists

• SAT is an NP-complete decision problem [Cook’71]

– SAT was the first problem to be shown NP-complete
– There are no known polynomial time algorithms for SAT
– 36-year old conjecture:

Any algorithm that solves SAT is exponential in the number of
variables, in the worst-case

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Applications of SAT I

• Formal methods:

– Hardware model checking; Software model checking;
Termination analysis of term-rewrite systems; Test pattern
generation (testing of software & hardware); etc.

• Artificial intelligence:

– Planning; Knowledge representation; Games (n-queens,
sudoku, social golpher’s, etc.)

• Bioinformatics:

– Haplotype inference; Pedigree checking; Comparative
genomics; etc.

• Design automation:

– Equivalence checking; Delay computation; Fault diagnosis;
Noise analysis; etc.

• Security:

– Cryptanalysis; Inversion attacks on hash functions; etc.

Applications of SAT II

• Computationally hard problems:

– Graph coloring; Traveling salesperson; etc.

• Mathematical problems:

– van der Waerden numbers; etc.

• Core engine for other solvers: 0-1 ILP; QBF; #SAT; SMT; ...

• Integrated into theorem provers: HOL; Isabelle; ...

Example: Graph Coloring I

• Decide whether one can assign one of K colors to each of the
vertices of graph G = (V , E) such that adjacent vertices are
assigned different colors

Valid coloring Invalid coloring

Example: Graph Coloring II

• Given N = |V | vertices and K colors, create N × K variables:
xij = 1 iff vertex i is assigned color j ; 0 otherwise

• For each edge (u, v), require different assigned colors to u and
v :

1 ≤ j ≤ K , (¬xuj ∨ ¬xvj)

• Each vertex is assigned exactly one color:

1 ≤ i ≤ N,

K∑

j=1

xij = 1

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Representing AtLeast, AtMost and Equal Constraints

• How to represent in CNF the constraint
∑N

j=1 xj ≥ 1?

– Standard solution: (x1 ∨ . . . ∨ xN)

• How to represent in CNF the constraint
∑N

j=1 xij ≤ 1?

– Naive solution: ∀j1=1..N∀j2=j1+1..N (¬xij1 ∨ ¬xij2)
I Number of clauses grows quadratically with N

– More compact (i.e. linear) solutions possible
I At the cost of using additional variables

• How to represent in CNF the constraint
∑N

j=1 xij = 1?

– Standard solution: one AtMost 1 and one AtLeast 1 constraints

Representing Boolean Circuits / Formulas I

• Satisfiability problems can be defined on Boolean
circuits/formulas

• Can represent circuits/formulas as CNF formulas [Tseitin’68]
– For each (simple) gate, CNF formula encodes the consistent

assignments to the gate’s inputs and output
I Given z = OP(x , y), represent in CNF z ↔ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula
for each gate

ϕc = (a ∨ c) ∧ (b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

ϕt = (¬r ∨ t) ∧ (¬s ∨ t) ∧ (r ∨ s ∨ ¬t)

a

b

c

r

s

t

Representing Boolean Circuits / Formulas II

a

b

c

a b c ϕc(a,b,c)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

ϕc = (a ∨ c) ∧ (b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

Representing Boolean Circuits / Formulas III

• CNF formula for the circuit is the conjunction of the CNF
formula for each gate

– Can specify objectives with additional clauses

a

b
c d

x
z = 1?

y

ϕ = (a ∨ x) ∧ (b ∨ x) ∧ (¬a ∨ ¬b ∨ ¬x) ∧

(x ∨ ¬y) ∧ (c ∨ ¬y) ∧ (¬x ∨ ¬c ∨ y) ∧

(¬y ∨ z) ∧ (¬d ∨ z) ∧ (y ∨ d ∨ ¬z) ∧

(z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))

– No distinction between Boolean circuits and formulas

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Algorithms for SAT

• Incomplete algorithms (i.e. can only prove (un)satisfiability):

– Local search / hill-climbing
– Genetic algorithms
– Simulated annealing
– ...

• Complete algorithms (i.e. can prove both satisfiability and
unsatisfiability):

– Proof system(s)
I Natural deduction
I Resolution
I Stalmarck’s method
I Recursive learning
I ...

– Binary Decision Diagrams (BDDs)
– Backtrack search / DPLL

I Conflict-Driven Clause Learning (CDCL)

– ...

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Definitions

• Propositional variables can be assigned value 0 or 1

– In some contexts variables may be unassigned

• A clause is satisfied if at least one of its literals is assigned
value 1

(x1 ∨ ¬x2 ∨ ¬x3)

• A clause is unsatisfied if all of its literals are assigned value 0

(x1 ∨ ¬x2 ∨ ¬x3)

• A clause is unit if it contains one single unassigned literal and
all other literals are assigned value 0

(x1 ∨ ¬x2 ∨ ¬x3)

• A formula is satisfied if all of its clauses are satisfied

• A formula is unsatisfied if at least one of its clauses is
unsatisfied

Pure Literals

• A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula

– Example:
ϕ = (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2) ∧ (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

– x1 and x3 and pure literals

• Pure literal rule:
Clauses containing pure literals can be removed from the
formula (i.e. just assign pure literals to the values that satisfy
the clauses)

– For the example above, the resulting formula becomes:
ϕ = (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

• A reference technique until the mid 90s; nowadays seldom
used

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit Propagation

• Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

– Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned
value 0

• Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

• Unit propagation can satisfy clauses but can also unsatisfy
clauses. Unsatisfied clauses create conflicts.

Resolution

• Resolution rule:

– If a formula ϕ contains clauses (x ∨ α) and (¬x ∨ β), then one
can infer (α ∨ β)

(x ∨ ¬α) ∧ (¬x ∨ β) ` (α ∨ β)

• Resolution forms the basis of a complete algorithm for SAT
– Iteratively apply the following steps: [Davis&Putnam’60]

I Select variable x
I Apply resolution rule between every pair of clauses of the form

(x ∨ α) and (¬x ∨ β)
I Remove all clauses containing either x or ¬x

I Apply the pure literal rule and unit propagation

– Terminate when either the empty clause or the empty formula
is derived

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

Resolution – An Example

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3 ∨ x4) ∧ (x3 ∨ ¬x4) `

(x3)

• Formula is SAT

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)
– Done if all clauses satisfied

Organization of Local Search

• Local search is incomplete; usually it cannot prove
unsatisfiability

– Very effective in specific contexts

• Example:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

• Start with (possibly random) assignment:
x4 = 0, x1 = x2 = x3 = 1

• And repeat a number of times:

– If not all clauses satisfied, flip variable (e.g. x4)
– Done if all clauses satisfied

• Repeat (random) selection of assignment a number of times

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Historical Perspective I

• In 1960, M. Davis and H. Putnam proposed the DP
algorithm:

– Resolution used to eliminate 1 variable at each step
– Applied the pure literal rule and unit propagation

• Original algorithm was inefficient

Historical Perspective I

• In 1960, M. Davis and H. Putnam proposed the DP
algorithm:

– Resolution used to eliminate 1 variable at each step
– Applied the pure literal rule and unit propagation

• Original algorithm was inefficient

Historical Perspective II

• In 1962, M. Davis, G. Logemann and D. Loveland proposed
an alternative algorithm:

– Instead of eliminating variables, the algorithm would split on a
given variable at each step

– Also applied the pure literal rule and unit propagation

• The 1962 algorithm is actually an implementation of
backtrack search

• Over the years the 1962 algorithm became known as the
DPLL (sometimes DLL) algorithm

Basic Algorithm for SAT – DPLL

• Standard backtrack search

• At each step:

– [DECIDE] Select decision assignment
– [DEDUCE] Apply unit propagation and (optionally) the pure

literal rule
– [DIAGNOSIS] If conflict identified, then backtrack

I If cannot backtrack further, return UNSAT
I Otherwise, proceed with unit propagation

– If formula satisfied, return SAT
– Otherwise, proceed with another decision

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

b

a

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

c

An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧

(¬b ∨ ¬d ∨ ¬e) ∧

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧

(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

solution

a

c

b

conflict

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

CDCL SAT Solvers

• Introduced in the 90’s
[Marques-Silva&Sakallah’96][Bayardo&Schrag’97]

• Inspired on DPLL

– Must be able to prove both satisfiability and unsatisfiability

• New clauses are learnt from conflicts

• Structure of conflicts exploited (UIPs)

• Backtracking can be non-chronological

• Efficient data structures [Moskewicz&al’01]

– Compact and reduced maintenance overhead

• Backtrack search is periodically restarted [Gomes&al’98]

• Can solve instances with hundreds of thousand variables and
tens of million clauses

CDCL SAT Solvers

• Introduced in the 90’s
[Marques-Silva&Sakallah’96][Bayardo&Schrag’97]

• Inspired on DPLL

– Must be able to prove both satisfiability and unsatisfiability

• New clauses are learnt from conflicts

• Structure of conflicts exploited (UIPs)

• Backtracking can be non-chronological

• Efficient data structures

– Compact and reduced maintenance overhead

• Backtrack search is periodically restarted

• Can solve instances with hundreds of thousand variables and
tens of million clauses

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (a = 1) ∨ (c = 1) ∨ (f = 1)

Clause Learning

• During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f) . . .

– Assume decisions c = 0 and f = 0
– Assign a = 0 and imply assignments
– A conflict is reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (a = 0) ∧ (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (a = 1) ∨ (c = 1) ∨ (f = 1)

– Learn new clause (a ∨ c ∨ f)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (c = 1) ∨ (f = 1)

Non-Chronological Backtracking

• During backtrack search, for each conflict backtrack to one of
the causes of the conflict

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f)∧

(a ∨ c ∨ f) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

– Assume decisions c = 0, f = 0, h = 0 and i = 0
– Assignment a = 0 caused conflict ⇒ learnt clause (a ∨ c ∨ f)

implies a = 1
– A conflict is again reached: (¬d ∨ ¬e ∨ f) is unsatisfied
– (c = 0) ∧ (f = 0) ⇒ (ϕ = 0)
– (ϕ = 1) ⇒ (c = 1) ∨ (f = 1)

– Learn new clause (c ∨ f)

Non-Chronological Backtracking

c

i

h

f

a

(c ∨ f)(a ∨ c ∨ f)

Non-Chronological Backtracking

c

i

h

f

a

(c ∨ f)(a ∨ c ∨ f)

• Learnt clause: (c ∨ f)

• Need to backtrack, given
new clause

• Backtrack to most recent
decision: f = 0

• Clause learning and
non-chronological
backtracking are hallmarks
of modern SAT solvers

Most Recent Backtracking Scheme

c

i

h

f

a

(a ∨ c ∨ f)

Most Recent Backtracking Scheme

c

i

h

f

a

(a ∨ c ∨ f)

Most Recent Backtracking Scheme

a

c

i

h

a

(a ∨ c ∨ f)

f (a ∨ c ∨ f)

• Learnt clause: (a ∨ c ∨ f)

• No need to assign a = 1 -
backtrack to most recent
decision: f = 0

• Search algorithm is no
longer a traditional
backtracking scheme

Unique Implication Points (UIPs)

a i

h

b

c

g d

conflict f

e

• Exploit structure from the implication graph

– To have a more aggressive backtracking policy

• Identify additional clauses to be learnt
[Marques-Silva&Sakallah’96]

– Create clauses (a ∨ c ∨ f) and (¬i ∨ f)
– Imply not only a = 1 but also i = 0

• 1st UIP scheme is the most efficient [Zhang&al’01]

– Create only one clause (¬i ∨ f)
– Avoid creating similar clauses involving the same literals

Clause deletion policies

• Keep only the small clauses [Marques-Silva&Sakallah’96]

– For each conflict record one clause
– Keep clauses of size ≤ K

– Large clauses get deleted when become unresolved

• Keep only the relevant clauses [Bayardo&Schrag’97]

– Delete unresolved clauses with ≤ M free literals

• Keep only the clauses that are used [Goldberg&Novikov’02]

– Keep track of clauses activity

Data Structures

• Key point: only unit and unsatisfied clauses must be detected
during search

– Formula is unsatisfied when at least one clause is unsatisfied
– Formula is satisfied when all the variables are assigned and

there are no unsatisfied clauses

• In practice: unit and unsatisfied clauses may be identified
using only two references

• Standard data structures (adjacency lists):

– Each variable x keeps a reference to all clauses containing a
literal in x

• Lazy data structures (watched literals):

– For each clause, only two variables keep a reference to the
clause, i.e. only 2 literals are watched

Standard Data Structures (adjacency lists)

size = 5
literals1= 0
literals0 = 4

size = 5
literals1= 0
literals0 = 5

size = 5
literals1= 1
literals0 = 4

unit

satisfied

unsatisfied

• Each variable x keeps a reference
to all clauses containing a literal in
x

– If variable x is assigned, then all
clauses containing a literal in x

are evaluated
– If search backtracks, then all

clauses of all newly unassigned
variables are updated

• Total number of references is L,
where L is the number of literals

Lazy Data Structures (watched literals)

satisfied

after backtracking to level 4

unresolved

unit

@5 @3 @1

@1@7@3@5

@5 @7 @7 @1

@1@3

@3

unresolved

@1@3

• For each clause, only two
variables keep a reference to the
clause, i.e. only 2 literals are
watched

– If variable x is assigned, only
the clauses where literals in x

are watched need to be
evaluated

– If search backtracks, then
nothing needs to be done

• Total number of references is
2 × C , where C is the number
of clauses

– In general L � 2 × C , in
particular if clauses are learnt

Search Heuristics

• Standard data structures: heavy heuristics
– DLIS: Dynamic Large Individual Sum [Marques-Silva’99]

I Selects the literal that appears most frequently in unresolved
clauses

• Lazy data structures: light heuristics
– VSIDS: Variable State Independent Decaying Sum

[Moskewicz&al’01]
I Each literal has a counter, initialized to zero
I When a new clause is recorded, the counter associated with

each literal in the clause is incremented
I The unassigned literal with the highest counter is chosen at

each decision

– Other variations
I Counters updated also for literals in the clauses involved in

conflicts [Goldberg&Novikov’02]

Restarts I

• Plot for processor verification instance with branching
randomization and 10000 runs

– More than 50% of the runs require less than 1000 backtracks
– A small percentage requires more than 10000 backtracks

• Run times of backtrack search SAT solvers characterized by
heavy-tail distributions

Restarts II

solutioncutoffcutoff

• Repeatedly restart the search each time a cutoff is reached
– Randomization allows to explore different paths in search tree

• Resulting algorithm is incomplete
– Increase the cutoff value
– Keep clauses from previous runs

cutoff

solution
clauses

new

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Well-Known Extensions of SAT

• The formula is unsatisfiable
– Maximum Satisfiability (MAX-SAT):

Satisfy the largest number of clauses

• Quantify the variables
– Quantified Boolean Formulas (QBF):

Boolean formulas where variables are existentially or universally
quantified

• Consider extended constraints
– Pseudo-Boolean formulas (PBS/PBO):

Linear inequalities over Boolean variables

• Consider decidable fragments of FOL
– Satisfiability Modulo Theories (SMT):

Decision procedures for a number of theories exist
I Linear Integer Arithmetic
I Uninterpreted Functions
I ...

• Interesting results for most extensions, but still far from the
impact of SAT solvers

Conclusions

• The ingredients for having an efficient SAT solver
– Mistakes are not a problem

I Learn from your conflicts
I ... and perform non-chronological backtracking
I Restart the search

– Be lazy!
I Lazy data structures
I Low-cost heuristics

• Thanks to João Marques-Silva and Daniel Le Berre

The Next SAT Conference

• May 12 - 15 2008, Guangzhou, P. R. China

• Submission deadline: January 11th, 2008

• Affiliated events

– SAT Race
– QBFEVAL
– Max-SAT Evaluation

Thank you!

	What is Boolean Satisfiability?
	Applications
	Modeling
	Algorithms
	Fundamentals
	Local Search
	The DPLL Algorithm
	Conflict-Driven Clause Learning (CDCL)

	Extensions

