Modern SAT Solving

Inês Lynce
IST/INESC-ID
Technical University of Lisbon
Portugal
CP 2007

Motivation - Why SAT?

- Boolean Satisfiability (SAT) has seen significant improvements in recent years
- Ok, but SAT is simply a subset of CP...
- This does not make SAT a simple issue!
- So, can we learn anything from there?
- Much more than you can imagine!

Motivation - Some lessons from SAT I

- Time is everything
- Good ideas are not enough, you have to be fast!
- One thing is the algorithm, another thing is the implementation
- Make your source code available
- Otherwise people will have to wait for years before realising what you have done

Motivation - Some lessons from SAT II

- Competitions are essential
- To check the state-of-the-art
- To keep the community alive
- To get students involved

Motivation - Some lessons from SAT III

- There is no perfect solver!
- Do not expect your solver to beat all the other solvers on all problem instances
- What makes a good solver?
- Correctness and robustness for sure...
- Being most often the best for its category: industrial, handmade or random
- Being able to solve instances from different problems

www.satcompetition.org

- Get all the info from the SAT competition web page
- Organizers, judges, benchmarks, executables, source code
- Winners
- Industrial, handmade and random benchmarks
- Sat+Unsat, Sat, Unsat categories
- Gold, Silver, Bronze medals

SAT 2007 competition									
Organizing committee	Danlel Le Berre:Ollvier Roussel and Laurent Simon								
Judges	Ewald Speckenmeyer, Goott Sutalitto and Lintao Zhang								
Benchrmarks	random (tar tz2 44MB), crafted (-tar, bz2 compressed files inside 175MB), Industrial (tar, bz2 compressed files inside, 556 MB) + velev's VLIW-SAT 4.0 and VLIW-UNSAT 2.0 + IBM benchmarks								
Systems	AIl/Winners precompiled to linux (tgz, 25/10 MB). Source code (competition division only, tgz, -updated 11/7/07-6MB).								
	Industrial			handmade			Random		
	Gold	Silver	Bronze	Gold	Silver	Eronze	Gold	Silver	Bronze
SAT+UNSAT	Reat	Ploosat	Minimi	SATZIIS CRAFTED	Minisal	mxc	SATzilla Random	March KS	KCNFS 2004
SAT	Plcosat	Rsat	Minicat	March KS	SATZIII CRAFTED	Minilsal	gnovelty +	adaptg 2wsato	adapagewsal+
UNSAT	Rsat	Minisat	TiniSatELite	SATzilla CRAFTED	ITS	Mimisat	March KS	KCNFS 2004	SATzille Handom

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Outline

$$
4 \square>4 \text { 可 } \downarrow 4 \text { 三 }
$$

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Boolean Formulas

- Boolean formula φ is defined over a set of propositional variables x_{1}, \ldots, x_{n}, using the standard propositional connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis
- The domain of propositional variables is $\{0,1\}$
- Example: $\varphi\left(x_{1}, \ldots, x_{3}\right)=\left(\left(\neg x_{1} \wedge x_{2}\right) \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$
- A formula φ in conjunctive normal form (CNF) is a conjunction of disjunctions (clauses) of literals, where a literal is a variable or its complement
- Example: $\varphi\left(x_{1}, \ldots, x_{3}\right)=\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$
- Can encode any Boolean formula into CNF (more later)

Boolean Satisfiability (SAT)

- The Boolean satisfiability (SAT) problem:
- Find an assignment to the variables x_{1}, \ldots, x_{n} such that $\varphi\left(x_{1}, \ldots, x_{n}\right)=1$, or prove that no such assignment exists
- SAT is an NP-complete decision problem
[Cook'71]
- SAT was the first problem to be shown NP-complete
- There are no known polynomial time algorithms for SAT
- 36-year old conjecture:

Any algorithm that solves SAT is exponential in the number of variables, in the worst-case

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm Conflict-Driven Clause Learning (CDCL)

Extensions

Applications of SAT I

- Formal methods:
- Hardware model checking; Software model checking; Termination analysis of term-rewrite systems; Test pattern generation (testing of software \& hardware); etc.
- Artificial intelligence:
- Planning; Knowledge representation; Games (n-queens, sudoku, social golpher's, etc.)
- Bioinformatics:
- Haplotype inference; Pedigree checking; Comparative genomics; etc.
- Design automation:
- Equivalence checking; Delay computation; Fault diagnosis; Noise analysis; etc.
- Security:
- Cryptanalysis; Inversion attacks on hash functions; etc.

Applications of SAT II

- Computationally hard problems:
- Graph coloring; Traveling salesperson; etc.
- Mathematical problems:
- van der Waerden numbers; etc.
- Core engine for other solvers: 0-1 ILP; QBF; \#SAT; SMT; ...
- Integrated into theorem provers: HOL; Isabelle; ...

Example: Graph Coloring I

- Decide whether one can assign one of K colors to each of the vertices of graph $G=(V, E)$ such that adjacent vertices are assigned different colors

Valid coloring

Invalid coloring

Example: Graph Coloring II

- Given $N=|V|$ vertices and K colors, create $N \times K$ variables: $x_{i j}=1$ iff vertex i is assigned color j; 0 otherwise
- For each edge (u, v), require different assigned colors to u and v :

$$
1 \leq j \leq K, \quad\left(\neg x_{u j} \vee \neg x_{v j}\right)
$$

- Each vertex is assigned exactly one color:

$$
1 \leq i \leq N, \quad \sum_{j=1}^{K} x_{i j}=1
$$

Outline

> What is Boolean Satisfiability?

> Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Representing AtLeast, AtMost and Equal Constraints

- How to represent in CNF the constraint $\sum_{j=1}^{N} x_{j} \geq 1$?
- Standard solution: $\left(x_{1} \vee \ldots \vee x_{N}\right)$
- How to represent in CNF the constraint $\sum_{j=1}^{N} x_{i j} \leq 1$?
- Naive solution: $\forall_{j_{1}=1 . . N} \forall_{j_{2}=j_{1}+1 . . N}\left(\neg x_{i j_{1}} \vee \neg x_{i_{2}}\right)$
- Number of clauses grows quadratically with N
- More compact (i.e. linear) solutions possible
- At the cost of using additional variables
- How to represent in CNF the constraint $\sum_{j=1}^{N} x_{i j}=1$?
- Standard solution: one AtMost 1 and one AtLeast 1 constraints

Representing Boolean Circuits / Formulas I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can represent circuits/formulas as CNF formulas [Tseitin'68]
- For each (simple) gate, CNF formula encodes the consistent assignments to the gate's inputs and output
- Given $z=\mathrm{OP}(x, y)$, represent in CNF $z \leftrightarrow \mathrm{OP}(x, y)$
- CNF formula for the circuit is the conjunction of CNF formula for each gate

$$
\begin{aligned}
& \varphi_{c}=(a \vee c) \wedge(b \vee c) \wedge(\neg a \vee \neg b \vee \neg c) \\
& \varphi_{t}=(\neg r \vee t) \wedge(\neg s \vee t) \wedge(r \vee s \vee \neg t)
\end{aligned}
$$

Representing Boolean Circuits / Formulas II

a	b	c	$\varphi_{c}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$
\varphi_{c}=(a \vee c) \wedge(b \vee c) \wedge(\neg a \vee \neg b \vee \neg c)
$$

Representing Boolean Circuits / Formulas III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

$$
\begin{aligned}
\varphi= & (a \vee x) \wedge(b \vee x) \wedge(\neg a \vee \neg b \vee \neg x) \wedge \\
& (x \vee \neg y) \wedge(c \vee \neg y) \wedge(\neg x \vee \neg c \vee y) \wedge \\
& (\neg y \vee z) \wedge(\neg d \vee z) \wedge(y \vee d \vee \neg z) \wedge \\
& (z)
\end{aligned}
$$

- Note: $z=d \vee(c \wedge(\neg(a \wedge b)))$
- No distinction between Boolean circuits and formulas

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Algorithms for SAT

- Incomplete algorithms (i.e. can only prove (un)satisfiability):
- Local search / hill-climbing
- Genetic algorithms
- Simulated annealing
- ...
- Complete algorithms (i.e. can prove both satisfiability and unsatisfiability):
- Proof system(s)
- Natural deduction
- Resolution
- Stalmarck's method
- Recursive learning
- ...
- Binary Decision Diagrams (BDDs)
- Backtrack search / DPLL
- Conflict-Driven Clause Learning (CDCL)
- ...

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm Conflict-Driven Clause Learning (CDCL)

Extensions

Definitions

- Propositional variables can be assigned value 0 or 1
- In some contexts variables may be unassigned
- A clause is satisfied if at least one of its literals is assigned value 1

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

- A clause is unsatisfied if all of its literals are assigned value 0

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

- A clause is unit if it contains one single unassigned literal and all other literals are assigned value 0

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

- A formula is satisfied if all of its clauses are satisfied
- A formula is unsatisfied if at least one of its clauses is unsatisfied

Pure Literals

- A literal is pure if only occurs as a positive literal or as a negative literal in a CNF formula
- Example:

$$
\varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

- x_{1} and x_{3} and pure literals
- Pure literal rule:

Clauses containing pure literals can be removed from the formula (i.e. just assign pure literals to the values that satisfy the clauses)

- For the example above, the resulting formula becomes:

$$
\varphi=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

- A reference technique until the mid 90s; nowadays seldom used

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)
\end{aligned}
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)
\end{aligned}
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)
\end{aligned}
$$

Unit Propagation

- Unit clause rule:

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied

- Example: for unit clause ($x_{1} \vee \neg x_{2} \vee \neg x_{3}$), x_{3} must be assigned value 0
- Unit propagation

Iterated application of the unit clause rule

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)
\end{aligned}
$$

- Unit propagation can satisfy clauses but can also unsatisfy clauses. Unsatisfied clauses create conflicts.

Resolution

- Resolution rule:
- If a formula φ contains clauses $(x \vee \alpha)$ and $(\neg x \vee \beta)$, then one can infer $(\alpha \vee \beta$)

$$
(x \vee \neg \alpha) \wedge(\neg x \vee \beta) \vdash(\alpha \vee \beta)
$$

- Resolution forms the basis of a complete algorithm for SAT
- Iteratively apply the following steps: [Davis\&Putnam'60]
- Select variable x
- Apply resolution rule between every pair of clauses of the form $(x \vee \alpha)$ and $(\neg x \vee \beta)$
- Remove all clauses containing either x or $\neg x$
- Apply the pure literal rule and unit propagation
- Terminate when either the empty clause or the empty formula is derived

Resolution - An Example

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) \vdash
$$

Resolution - An Example

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) \vdash \\
& \left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)
\end{aligned}
$$

Resolution - An Example

$$
\begin{array}{ll}
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)
\end{array}
$$

Resolution - An Example

$$
\begin{array}{ll}
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash
\end{array}
$$

Resolution - An Example

$$
\begin{array}{ll}
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4}\right) & \vdash \\
\left(x_{3}\right) &
\end{array}
$$

- Formula is SAT

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm Conflict-Driven Clause Learning (CDCL)

Extensions

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:
$x_{4}=0, x_{1}=x_{2}=x_{3}=1$
- And repeat a number of times:

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:
$x_{4}=0, x_{1}=x_{2}=x_{3}=1$
- And repeat a number of times:

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:

$$
x_{4}=0, x_{1}=x_{2}=x_{3}=1
$$

- And repeat a number of times:
- If not all clauses satisfied, flip variable (e.g. x_{4})

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:

$$
x_{4}=0, x_{1}=x_{2}=x_{3}=1
$$

- And repeat a number of times:
- If not all clauses satisfied, flip variable (e.g. x_{4})

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:

$$
x_{4}=0, x_{1}=x_{2}=x_{3}=1
$$

- And repeat a number of times:
- If not all clauses satisfied, flip variable (e.g. x_{4})
- Done if all clauses satisfied

Organization of Local Search

- Local search is incomplete; usually it cannot prove unsatisfiability
- Very effective in specific contexts
- Example:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)
$$

- Start with (possibly random) assignment:
$x_{4}=0, x_{1}=x_{2}=x_{3}=1$
- And repeat a number of times:
- If not all clauses satisfied, flip variable (e.g. x_{4})
- Done if all clauses satisfied
- Repeat (random) selection of assignment a number of times

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

Historical Perspective I

- In 1960, M. Davis and H. Putnam proposed the DP algorithm:
- Resolution used to eliminate 1 variable at each step
- Applied the pure literal rule and unit propagation
- Original algorithm was inefficient

Historical Perspective I

- In 1960, M. Davis and H. Putnam proposed the DP algorithm:
- Resolution used to eliminate 1 variable at each step
- Applied the pure literal rule and unit propagation
- Original algorithm was inefficient

Historical Perspective II

- In 1962, M. Davis, G. Logemann and D. Loveland proposed an alternative algorithm:
- Instead of eliminating variables, the algorithm would split on a given variable at each step
- Also applied the pure literal rule and unit propagation
- The 1962 algorithm is actually an implementation of backtrack search
- Over the years the 1962 algorithm became known as the DPLL (sometimes DLL) algorithm

Basic Algorithm for SAT - DPLL

- Standard backtrack search
- At each step:
- [DECIDE] Select decision assignment
- [DEDUCE] Apply unit propagation and (optionally) the pure literal rule
- [DIAGNOSIS] If conflict identified, then backtrack
- If cannot backtrack further, return UNSAT
- Otherwise, proceed with unit propagation
- If formula satisfied, return SAT
- Otherwise, proceed with another decision

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

An Example of DPLL

$$
\begin{aligned}
\varphi= & (a \vee \neg b \vee d) \wedge(a \vee \neg b \vee e) \wedge \\
& (\neg b \vee \neg d \vee \neg e) \wedge \\
& (a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee \neg d) \wedge \\
& (a \vee b \vee \neg c \vee e) \wedge(a \vee b \vee \neg c \vee \neg e)
\end{aligned}
$$

Outline

What is Boolean Satisfiability?

Applications

Modeling

Algorithms
Fundamentals
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Extensions

CDCL SAT Solvers

- Introduced in the 90's
[Marques-Silva\&Sakallah'96][Bayardo\&Schrag'97]
- Inspired on DPLL
- Must be able to prove both satisfiability and unsatisfiability
- New clauses are learnt from conflicts
- Structure of conflicts exploited (UIPs)
- Backtracking can be non-chronological
- Efficient data structures [Moskewicz\&al'01]
- Compact and reduced maintenance overhead
- Backtrack search is periodically restarted [Gomes\&al'98]
- Can solve instances with hundreds of thousand variables and tens of million clauses

CDCL SAT Solvers

- Introduced in the 90's
[Marques-Silva\&Sakallah'96][Bayardo\&Schrag'97]
- Inspired on DPLL
- Must be able to prove both satisfiability and unsatisfiability
- New clauses are learnt from conflicts
- Structure of conflicts exploited (UIPs)
- Backtracking can be non-chronological
- Efficient data structures
- Compact and reduced maintenance overhead
- Backtrack search is periodically restarted
- Can solve instances with hundreds of thousand variables and tens of million clauses

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign a $=0$ and imply assignments

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign a $=0$ and imply assignments

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign $a=0$ and imply assignments
- A conflict is reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign $a=0$ and imply assignments
- A conflict is reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(a=0) \wedge(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign $a=0$ and imply assignments
- A conflict is reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(a=0) \wedge(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$
$-(\varphi=1) \Rightarrow(a=1) \vee(c=1) \vee(f=1)$

Clause Learning

- During backtrack search, for each conflict learn new clause, which explains and prevents repetition of the same conflict

$$
\varphi=(a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \ldots
$$

- Assume decisions $c=0$ and $f=0$
- Assign $a=0$ and imply assignments
- A conflict is reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(a=0) \wedge(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$
$-(\varphi=1) \Rightarrow(a=1) \vee(c=1) \vee(f=1)$
- Learn new clause $(a \vee c \vee f)$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause $(a \vee c \vee f)$ implies $a=1$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause ($a \vee c \vee f$) implies $a=1$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause $(a \vee c \vee f)$ implies $a=1$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause ($a \vee c \vee f$) implies $a=1$
- A conflict is again reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause $(a \vee c \vee f)$ implies $a=1$
- A conflict is again reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause ($a \vee c \vee f$) implies $a=1$
- A conflict is again reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$
$-(\varphi=1) \Rightarrow(c=1) \vee(f=1)$

Non-Chronological Backtracking

- During backtrack search, for each conflict backtrack to one of the causes of the conflict

$$
\begin{aligned}
\varphi= & (a \vee b) \wedge(\neg b \vee c \vee d) \wedge(\neg b \vee e) \wedge(\neg d \vee \neg e \vee f) \wedge \\
& (a \vee c \vee f) \wedge(\neg a \vee g) \wedge(\neg g \vee b) \wedge(\neg h \vee j) \wedge(\neg i \vee k)
\end{aligned}
$$

- Assume decisions $c=0, f=0, h=0$ and $i=0$
- Assignment $a=0$ caused conflict \Rightarrow learnt clause ($a \vee c \vee f$) implies $a=1$
- A conflict is again reached: $(\neg d \vee \neg e \vee f)$ is unsatisfied
$-(c=0) \wedge(f=0) \Rightarrow(\varphi=0)$
$-(\varphi=1) \Rightarrow(c=1) \vee(f=1)$
- Learn new clause $(c \vee f)$

Non-Chronological Backtracking

Non-Chronological Backtracking

Most Recent Backtracking Scheme

Most Recent Backtracking Scheme

Most Recent Backtracking Scheme

Unique Implication Points (UIPs)

- Exploit structure from the implication graph
- To have a more aggressive backtracking policy
- Identify additional clauses to be learnt [Marques-Silva\&Sakallah'96]
- Create clauses $(a \vee c \vee f)$ and $(\neg i \vee f)$
- Imply not only $a=1$ but also $i=0$
- 1st UIP scheme is the most efficient [Zhang\&al'01]
- Create only one clause ($\neg i \vee f$)
- Avoid creating similar clauses involving the same literals

Clause deletion policies

- Keep only the small clauses [Marques-Silva\&Sakallah'96]
- For each conflict record one clause
- Keep clauses of size $\leq K$
- Large clauses get deleted when become unresolved
- Keep only the relevant clauses [Bayardo\&Schrag'97]
- Delete unresolved clauses with $\leq M$ free literals
- Keep only the clauses that are used [Goldberg\&Novikov'02]
- Keep track of clauses activity

Data Structures

- Key point: only unit and unsatisfied clauses must be detected during search
- Formula is unsatisfied when at least one clause is unsatisfied
- Formula is satisfied when all the variables are assigned and there are no unsatisfied clauses
- In practice: unit and unsatisfied clauses may be identified using only two references
- Standard data structures (adjacency lists):
- Each variable x keeps a reference to all clauses containing a literal in x
- Lazy data structures (watched literals):
- For each clause, only two variables keep a reference to the clause, i.e. only 2 literals are watched

Standard Data Structures (adjacency lists)

literals $0=4$
literals $1=0$
size $=5$

unit
literals $0=4$
literals $1=1$
size $=5$

satisfied
literals $0=5$
literals $1=0$
size $=5$

unsatisfied

- Each variable x keeps a reference to all clauses containing a literal in x
- If variable x is assigned, then all clauses containing a literal in x are evaluated
- If search backtracks, then all clauses of all newly unassigned variables are updated
- Total number of references is L, where L is the number of literals

Lazy Data Structures (watched literals)

- For each clause, only two variables keep a reference to the clause, i.e. only 2 literals are watched
- If variable x is assigned, only the clauses where literals in x are watched need to be evaluated
- If search backtracks, then nothing needs to be done
- Total number of references is $2 \times C$, where C is the number of clauses
- In general $L \gg 2 \times C$, in particular if clauses are learnt

Search Heuristics

- Standard data structures: heavy heuristics
- DLIS: Dynamic Large Individual Sum [Marques-Silva'99]
- Selects the literal that appears most frequently in unresolved clauses
- Lazy data structures: light heuristics
- VSIDS: Variable State Independent Decaying Sum [Moskewicz\&al'01]
- Each literal has a counter, initialized to zero
- When a new clause is recorded, the counter associated with each literal in the clause is incremented
- The unassigned literal with the highest counter is chosen at each decision
- Other variations
- Counters updated also for literals in the clauses involved in conflicts [Goldberg\&Novikov'02]

Restarts I

- Plot for processor verification instance with branching randomization and 10000 runs
- More than 50% of the runs require less than 1000 backtracks
- A small percentage requires more than 10000 backtracks
- Run times of backtrack search SAT solvers characterized by heavy-tail distributions

Restarts II

- Repeatedly restart the search each time a cutoff is reached
- Randomization allows to explore different paths in search tree
- Resulting algorithm is incomplete
- Increase the cutoff value
- Keep clauses from previous runs

Outline

```
What is Boolean Satisfiability?
Applications
Modeling
Algorithms
    Fundamentals
    Local Search
    The DPLL Algorithm
    Conflict-Driven Clause Learning (CDCL)
```

Extensions

Well-Known Extensions of SAT

- The formula is unsatisfiable
- Maximum Satisfiability (MAX-SAT): Satisfy the largest number of clauses
- Quantify the variables
- Quantified Boolean Formulas (QBF): Boolean formulas where variables are existentially or universally quantified
- Consider extended constraints
- Pseudo-Boolean formulas (PBS/PBO):

Linear inequalities over Boolean variables

- Consider decidable fragments of FOL
- Satisfiability Modulo Theories (SMT): Decision procedures for a number of theories exist
- Linear Integer Arithmetic
- Uninterpreted Functions
- Interesting results for most extensions, but still far from the impact of SAT solvers

Conclusions

- The ingredients for having an efficient SAT solver
- Mistakes are not a problem
- Learn from your conflicts
- ... and perform non-chronological backtracking
- Restart the search
- Be lazy!
- Lazy data structures
- Low-cost heuristics
- Thanks to João Marques-Silva and Daniel Le Berre

The Next SAT Conference

- May 12-15 2008, Guangzhou, P. R. China
- Submission deadline: January 11th, 2008
- Affiliated events
- SAT Race
- QBFEVAL
- Max-SAT Evaluation

Thank you!

